2.16.3.1.15. Yardstick Test Case Description TC058

OpenStack Controller Virtual Router Service High Availability

test case id

OPNFV_YARDSTICK_TC058: OpenStack Controller Virtual Router Service High Availability

test purpose

This test case will verify the high availability of virtual routers(L3 agent) on controller node. When a virtual router service on a specified controller node is shut down, this test case will check whether the network of virtual machines will be affected, and whether the attacked virtual router service will be recovered.

test method

This test case kills the processes of virtual router service (l3-agent) on a selected controller node(the node holds the active l3-agent), then checks whether the network routing of virtual machines is OK and whether the killed service will be recovered.

attackers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1) fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this test case. 2) process_name: which is the process name of the load balance service. If there are multiple processes use the same name on the host, all of them are killed by this attacker. 3) host: which is the name of a control node being attacked.

In this case, this process name should set to “l3agent” , for example -fault_type: “kill-process” -process_name: “l3agent” -host: node1

monitors

In this test case, two kinds of monitor are needed: 1. the “ip_status” monitor that pings a specific ip to check the connectivity of this ip, which needs two parameters: 1) monitor_type: which is used for finding the monitor class and related scripts. It should be always set to “ip_status” for this monitor. 2) ip_address: The ip to be pinged. In this case, ip_address will be either an ip address of external network or an ip address of a virtual machine. 3) host: The node on which ping will be executed, in this case the host will be a virtual machine.

2. the “process” monitor check whether a process is running on a specific node, which needs three parameters: 1) monitor_type: which used for finding the monitor class and related scripts. It should be always set to “process” for this monitor. 2) process_name: which is the process name for monitor. In this case, the process-name of monitor2 should be “l3agent” 3) host: which is the name of the node running the process

e.g. monitor1-1: -monitor_type: “ip_status” -host: 172.16.0.11 -ip_address: 172.16.1.11 monitor1-2: -monitor_type: “ip_status” -host: 172.16.0.11 -ip_address: 8.8.8.8 monitor2: -monitor_type: “process” -process_name: “l3agent” -host: node1

metrics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time (seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the maximum time (seconds) from the process being killed to recovered

test tool

None. Self-developed.

references

ETSI NFV REL001

configuration

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc058.yaml -Attackers: see above “attackers” description -Monitors: see above “monitors” description -Steps: the test case execution step, see “test sequence” description below

2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test case will use the node name in the pod.yaml.

test sequence

description and expected result

pre-test conditions

The test case image needs to be installed into Glance with cachestat included in the image.

step 1

Two host VMs are booted, these two hosts are in two different networks, the networks are connected by a virtual router.

step 1

start monitors: each monitor will run with independently process

Result: The monitor info will be collected.

step 2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified by “process_name”

Result: Process will be killed.

step 4

stop monitors after a period of time specified by “waiting_time”

Result: The monitor info will be aggregated.

step 5

verify the SLA

Result: The test case is passed or not.

post-action

It is the action when the test cases exist. It will check the status of the specified process on the host, and restart the process if it is not running for next test cases. Virtual machines and network created in the test case will be destoryed.

Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart the process.

test verdict

Fails only if SLA is not passed, or if there is a test case execution problem.